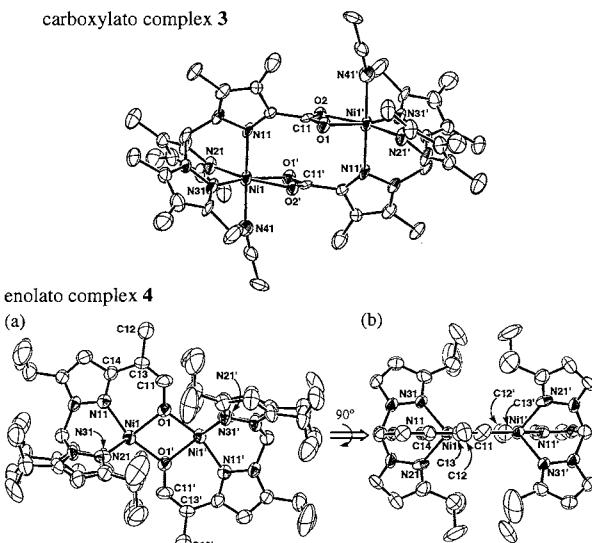
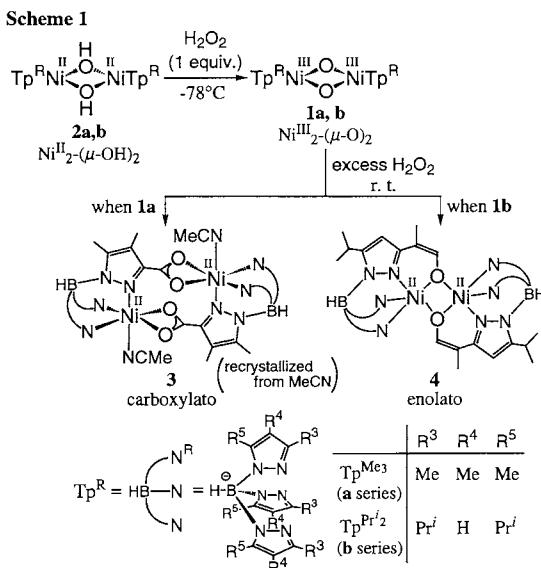


Oxygenation of Saturated Hydrocarbyl Groups in the Dinuclear Ni(III) Bis(μ -oxo) Complexes with the Hydrotris(pyrazolyl)borate Ligands Tp^R ($R = \text{Me}_3$ and Pr^i_2)

Shiro Hikichi,* Michito Yoshizawa, Yasuyuki Sasakura, Hidehito Komatsuzaki, Munetaka Akita,* and Yoshihiko Moro-oka*
Research Laboratory of Resources Utilization, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503

(Received June 16, 1999; CL-990517)



Intramolecular oxygenation of the Me and Pr^i substituents of Tp^R to give the carboxylate ($-\text{CO}_2^-$) and enolate ($-\text{CMe}=\text{CHO}^-$) groups, respectively, is mediated by the Ni(III)₂-bis(μ -oxo) complexes in the presence of an excess amount of H_2O_2 .

Elucidation of the reactivity of transition metal coordinated active oxygen species (O_2^- , O_2^{2-} , OOH^- , OOR^- and O_2^2) toward C-H bond oxidation is essential to understand the synthetic, catalytic and biological oxidation mechanisms.¹ In order to get comprehensive insights into the role of transition metal ions and reaction mechanisms in various oxidation processes, we have been investigating chemistry of the first- and second-row transition metal-dioxygen complexes with the tripodal N₃-donating hydrotris(pyrazolyl)borate ligands (= Tp^R).² Very recently, the bimetallic bis(μ -oxo) complexes of Ni(III) and Co(III) with the Tp^{Me_3} ligand ($\text{Tp}^{\text{Me}_3} =$ hydrotris(3,4,5-trimethyl-1-pyrazolyl)borate), which are closely related to the biologically important high-valent M(μ -O)₂M complexes of Cu³ and Fe,⁴ have been synthesized and characterized by X-ray crystallography.^{2a} In addition, intramolecular oxygenation of the isopropyl substituents on the $\text{Tp}^{\text{Pr}^i_2}$ (= hydrotris(3,5-diisopropyl-1-pyrazolyl)borate) ligand via metal-dioxygen species have been observed for the manganese⁵ and cobalt^{2b} complexes. In this communication, we report unique oxygenation of saturated hydrocarbyl groups mediated by the highly reactive dinuclear Ni(III)-bis(μ -oxo) species, $\text{Tp}^R\text{Ni}^{\text{III}}(\mu\text{-O})_2\text{Ni}^{\text{III}}\text{Tp}^R$ (1: $\text{Tp}^R = \text{Tp}^{\text{Me}_3}$ (**1a**), $\text{Tp}^{\text{Pr}^i_2}$ (**1b**))) in the presence of the excess amount of H_2O_2 .^{6,7}

The Ni(III)₂-bis(μ -oxo) complex with the Tp^{Me_3} ligand (**1a**) was reasonably stable to allow the structural characterization at low temperature but decomposed within an hour at room temperature in a solution state.^{2a} A dinuclear Ni(II) bis(μ -

hydroxo) complex bearing the $\text{Tp}^{\text{Pr}^i_2}$ ligand, $\text{Tp}^{\text{Pr}^i_2}\text{Ni}^{\text{II}}(\mu\text{-OH})_2\text{Ni}^{\text{II}}\text{Tp}^{\text{Pr}^i_2}$ (**2b**),⁸ also reacted with 1 equiv. of aqueous H_2O_2 (30 wt%) at -78 °C to give an extremely thermally unstable Ni^{III}₂-bis(μ -oxo) species **1b** (Scheme 1), which exhibited two intense absorption bands at 300 and 400 nm similar to the Tp^{Me_3} derivative **1a**.⁹ But the $\text{Tp}^{\text{Pr}^i_2}$ derivative **1b** was too unstable to be isolated and a brown pentane solution of **1b** turned to green one within a minute even at -50 °C.

Interestingly, treatment of the bis(μ -oxo) complexes **1** with an excess amount of H_2O_2 resulted in oxygenation of the proximal alkyl substituents of Tp^R , but the reaction patterns are slightly different from that observed for the analogous $\text{Tp}^{\text{Pr}^i_2}$ -cobalt system.^{2b} Upon standing of a CH_2Cl_2 solution of the Tp^{Me_3} complex **1a** at room temperature in the presence of an excess amount of aqueous H_2O_2 , the solution color turned from brown to blue within 2 h. X-Ray analysis of blue crystals **3** (obtained by recrystallization from a THF/MeCN solution) revealed the molecular structure formulated as $\{\text{Ni}^{\text{II}}[\text{HB}(3-(\kappa^2\text{-O}_2\text{C})-4,5\text{-Me}_2\text{pz})(3,4,5\text{-Me}_3\text{pz})_2](\text{NCMe})\}_2$ (Figure 1, top); one of the three 3-Me substituents on Tp^{Me_3} was oxygenated to give the corresponding carboxylate group ($-\text{CO}_2^-$), which was coordinated

Figure 1. Molecular structures of 3-2MeCN (= carboxylato complex; top) and 4-2MeCN-1.5 CH_2Cl_2 (= enolato complex; bottom) (drawn at the 50% probability level). All hydrogen atoms, solvates molecules and the disordered carbon atoms of 5- Pr^i groups in **4** are omitted for clarity. Selected bond lengths (Å) and angles (deg); for **3** (top), Ni1-O1, 2.175(6); Ni1-O2, 2.102(6); Ni1-N11, 2.076(6); Ni1-N21, 2.033(8); Ni1-N31, 2.063(8); Ni1-N41, 2.106(9); O1-C11, 1.24(1); O2-C11, 1.26(1); Ni1--Ni1', 5.443(3); O1-Ni1-O2, 61.3(2); Ni1-Ni1-N41, 177.8(4). for **4** (bottom); one of the two crystallographically independent molecules is presented: (a) side-view, (b) 90° rotated along the Ni1--Ni1' axis (All 5- Pr^i groups are omitted), Ni1-O1, 2.014(6); Ni1-O1', 1.997(6); Ni1-N11, 1.988(8); Ni1-N21, 2.052(8); Ni1-N31, 2.057(7); O1-C11, 1.32(1); C11-C13, 1.30(1); C12-C13, 1.47(1); C13-C14, 1.48(1); Ni1--Ni1', 3.179(2); C11-C13-C12, 122.2(9); C11-C13-C14, 122.0(9); C12-C13-C14, 115.8(8).

to the other Ni center to form the dimeric structure. The Ni centers were supported by an N_4O_2 ligand donor set composed of three pyrazolyl nitrogen atoms of the k^3 -Tp^R moiety, the chelating κ^2 -carboxylate oxygen atoms coming from the other oxidized Tp^R, and the MeCN molecule. Existence of the metal-coordinating carboxylate group was supported by the observation of the strong absorption at 1570 cm^{-1} in its IR spectrum. Remarkably, the remaining Me substituents on the functionalized Tp^R ligands were not oxidized. The present carboxylation reaction may proceed via sequential oxidation of the one of the three 3-Me substituents on Tp^{Me₃} to the corresponding primary alcohol ($-\text{CH}_2\text{OH}$) and the aldehyde ($-\text{C}(=\text{O})\text{H}$) intermediates, although the reaction mechanism remains to be studied.

In the case of the Tp^{Pr₁₂} system, very unique oxidation reaction of the 3-Prⁱ group was observed. Decomposition of **1b** in the presence of an excess amount of H₂O₂ (at r.t.) brought about not only oxygenation but also dehydrogenation of the Prⁱ groups¹² to give an enolato complex, $[\text{Ni}^{III}[\text{HB}(3-(\mu-\text{OCH}=\text{CMe})-5-\text{Pr}^i\text{pz})(3,5-\text{Pr}_2\text{pz})_2]]_2$ (**4**).¹³ In its IR spectrum, strong absorption was observed at 1616 cm^{-1} which was assigned as the C=C vibration. The determination of its molecular structure by X-ray crystallography was also accomplished successfully as presented in the bottom of Figure 1.¹¹ Complex **4** is a dimeric compound in which the chelating enolate ligands bridge the two Ni centers. Hybridization of the C13 and C13' atoms is sp^2 judging from the bond angles around them and the resulting oxygenated isopropenyl groups are coplanar with respect to the adjacent pyrazolyl rings. Six-membered nickelacycle (i.e. chelation through the pyrazolyl nitrogen and enolate oxygen atoms) may be highly stabilized by the extended π -electron-conjugation system over the functionalized pyrazolyl-enolato moiety.

The oxidation of the alkyl substituents of Tp^R observed for the present Ni system is slightly different from that observed for the analogous cobalt system (Chart 1). The decomposition of **1** in the presence of the excess amount of H₂O₂ results in further oxidation of the Me and Prⁱ substituents on Tp^R to give the carboxylato (**3**) and enolato (**4**) complexes instead of di- and fully-oxygenated complexes like **A** and **B**, which should be furnished via the mononuclear Co-OOX (X = alkyl, H) species.^{2b} It should be notable that treatment of the dinuclear Ni(II) bis(μ -hydroxo) complexes **2** with alkylhydroperoxides yielded neither the oxo species **1** nor the ligand oxygenated complexes **3** and **4**. These observations suggest that not mononuclear but dinuclear intermediates (presumably reactive Ni^{III}₂-bis(μ -oxo) species) repetitiously oxidize the same alkyl substituents.¹⁴

Chart 1

In conclusion, oxygenation of the Me and Prⁱ substituents of Tp^R to give the carboxylate ($-\text{CO}_2^-$) and enolate ($-\text{CMe}=\text{CHO}^-$) groups, respectively, was mediated by the Ni(III)-bis(μ -oxo) complexes in the presence of the excess amount of H₂O₂.

We are grateful to the Ministry of Education, Science, Sports,

and Culture of the Japanese Government for financial support of this research (Grant-in-Aid for Scientific Research 08102006).

References and Notes

- R. A. Sheldon and J. K. Kochi, "Metal-Catalyzed Oxidations of Organic Compounds," Academic Press, New York (1981); Thematic issue of *Chem. Rev.*, **Chem. Rev.**, **94**, 567 (1994); *Chem. Rev.*, **96**, 2237 (1996).
- Our recent works of dioxygen complex chemistry; Co, Ni-oxo: a) S. Hikichi, M. Yoshizawa, Y. Sakakura, M. Akita, and Y. Moro-oka, *J. Am. Chem. Soc.*, **120**, 10567 (1998). Co-OOR: b) S. Hikichi, H. Komatsuzaki, M. Akita, and Moro-oka, *J. Am. Chem. Soc.*, **120**, 4699 (1998). Fe-catecholate oxygenation: c) T. Ogihara, S. Hikichi, M. Akita, and Y. Moro-oka, *Inorg. Chem.*, **37**, 2614 (1998). Mn-OOR: d) H. Komatsuzaki, M. Satoh, N. Sakamoto, S. Hikichi, M. Akita, and Y. Moro-oka, *Inorg. Chem.*, **37**, 6554 (1998). V-O₂: e) M. Kosugi, S. Hikichi, M. Akita, and Y. Moro-oka, *J. Chem. Soc., Dalton Trans.*, **1999**, 1369. Pd-OO(R): f) M. Akita, T. Miyaji, S. Hikichi, and Y. Moro-oka, *Chem. Commun.*, **1998**, 1005.
- W. B. Tolman, *Acc. Chem. Res.*, **30**, 227 (1997); V. Mahadevan, Z. Hou, A. P. Cole, D. E. Root, T. K. Lal, E. I. Solomon, and T. D. P. Stack, *J. Am. Chem. Soc.*, **119**, 11996 (1997); H. V. Obias, Y. Lin, N. N. Murthy, E. Pidcock, E. I. Solomon, M. Ralle, N. J. Blackburn, Y.-M. Neuhold, A. D. Zuberbühler, and K. D. Karlin, *J. Am. Chem. Soc.*, **120**, 12960 (1998).
- L. Que, Jr. and Y. Dong, *Acc. Chem. Res.*, **29**, 190 (1996); L. Que, Jr., *J. Chem. Soc., Dalton Trans.*, **1997**, 3933.
- N. Kitajima, M. Osawa, M. Tanaka and Y. Moro-oka, *J. Am. Chem. Soc.*, **113**, 8952 (1991).
- Intramolecular ligand oxygenation of the nickel complexes has been reported: a) E. Kimura, M. Sasada, M. Shionoya, T. Koike, H. Kuroaki, and M. Shiro, *J. Biol. Inorg. Chem.*, **2**, 74 (1997) and references cited therein. b) D. Chen and A. E. Martell, *J. Am. Chem. Soc.*, **112**, 9411 (1990).
- Abbreviations used in this paper: Tp^{Me₃}, hydrotris(3,4,5-trimethyl-1-pyrazolyl)borate; Tp^{Pr₁₂}, hydrotris(3,5-diisopropyl-1-pyrazolyl)borate; 3,4,5-Me₃pzH, 3,4,5-trimethylpyrazole; 3,5-Pr₂pzH, 3,5-diisopropylpyrazole.
- N. Kitajima, S. Hikichi, M. Tanaka, and Y. Moro-oka, *J. Am. Chem. Soc.*, **115**, 5496 (1993).
- When 1 equiv. of aqueous H₂O₂ was added to an Et₂O solution of the Ni(II) hydroxo complex **2b** at -78 °C, the green solution changed to a dark brown one. UV-vis (Et₂O, -78 °C, nm, $\epsilon/\text{M}^{-1}\text{cm}^{-1}$): 304 (12000), 404 (10500), 495 (sh, 3000), 570 (sh, 2200).
- 20 equiv. of aqueous H₂O₂ (30 wt%) was added to a CH₂Cl₂ solution of **1a**. Upon being stirred for 2h at room temperature, the brown solution turned to pale green. After removal of remaining H₂O₂ and H₂O, the solvent was evaporated under vacuum. Recrystallization from THF/MeCN (-30 °C) afforded the pale blue crystalline solids of **3** in 71% isolated yield (based on **1a**). Selected spectroscopic data for **3**: IR (KBr pellet, ν/cm^{-1}): 2515 (BH), 1570 (COO). UV-vis (toluene, 23 °C, nm, $\epsilon/\text{M}^{-1}\text{cm}^{-1}$): 405 (110), 678 (30). FD-MS (m/z): 854 (3-2MeCN).
- Crystal data; for 3-2MeCN: C₄₄H₆₂B₂N₁₆Ni₂O₄, f.w. = 1018, monoclinic space group *P2₁/a* (# 14), a = 13.882(3) Å, b = 12.697(3) Å, c = 15.12(1) Å, β = 105.28(2)°, V = 2570(2) Å³, Z = 2, D_{calcd} = 1.32 gcm⁻³, $\mu(\text{Mo K}\alpha)$ = 7.89 cm⁻¹, $R(Rw)$ = 8.81(8.50)% for 2571 reflections ($>3\sigma(I)$) with 308 parameters. for 4-2MeCN-1.5CH₂Cl₂: C₅₉H₉₅B₂Cl₃N₁₂Ni₂O₂, f.w. = 1284, triclinic, space group *P\bar{1}* (# 2), a = 15.354(10) Å, b = 18.706(2) Å, c = 13.101(2) Å, α = 100.71(1)°, β = 105.84(2)°, γ = 81.56(1)°, V = 3538(1) Å³, Z = 2, D_{calcd} = 1.21 gcm⁻³, $\mu(\text{Mo K}\alpha)$ = 6.94 cm⁻¹, $R(Rw)$ = 8.99(8.91)% for 6058 reflections ($>5\sigma(I)$) with 790 parameters. A unit cell of 4-2MeCN-1.5CH₂Cl₂ contained two crystallographically independent molecules of **4** with essentially the same structures.
- K. H. Theopold, O. M. Reinaud, D. Doren and R. Konecny, "3rd World Congress on Oxidation Catalysis," ed by R. K. Grasselli, S. T. Oyama, A. M. Gaffney, and J. E. Lyons, Elsevier, Amsterdam (1997), p. 1081.
- When 5 equiv. of aqueous H₂O₂ was added to a toluene solution of **2b** at -78 °C, the green solution changed to a dark brown one. After being stirred for 1h at -78 °C, the reaction mixture was warmed up to room temperature then the solvent was removed in vacuo. The resulting yellow green solid was washed with MeCN to afford **4** (43% yield based on **2b**). Recrystallization from a MeCN/CH₂Cl₂ solution afforded yellow green single crystals of **4**. Selected spectroscopic data for **4**: IR (KBr pellet, ν/cm^{-1}): 2533 (BH), 1616 (C=C). UV-vis (toluene, 23 °C, nm, $\epsilon/\text{M}^{-1}\text{cm}^{-1}$): 417 (1020), 440 (sh, 800), 460 (sh, 550), 640 (46), 772 (480), 865 (30). FD-MS (m/z): 537, 1074 (M⁺).
- We could not determine the oxygen atom source in **3** and **4** due to exchange of the oxo ligands of **1** for O atom of exogenous H₂O.^{2a} Moreover, **3** and **4** could not be detected when **1** decomposed in the absence of excess amount of H₂O₂ under O₂ (1 atm).